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Top-of-the-Bill 
Lights Sequencer
Programmable fairy lights

HOME & GARDEN

These lights let you produce the most dra-
matic lighting effects, by altering the count-
less available movement patterns (vari-
able-speed chaser, random illumination, 
short or long flashes, etc.), and adjusting 
the colour (32 levels), saturation (16 levels, 
including white), and brightness (24 levels) 
— that means over 10,000 possible colour 
permutations!

Broadly speaking, the system consists of 
a master module that drives from 1 to 62 
slave modules, identical in all respects (the 
‘lights’), with a 9 V PSU, supplying at least 
2 A for 30 lights. The power supply is dis-
tributed to the master and lights in parallel 
(Figure 1).
The master drives all the lights over a single 
wire that carries a serial control signal. Dur-
ing the initialization stage, a return signal 
allows it to count the number of lights, 
which is then stored in the PIC’s internal 
EEPROM. Thus this return signal is used 
only once in the fairy-lights’ lifetime, and 
can then be disconnected, meaning that 

only one end of the string of lights has to 
be connected to the master module.
The master sends regular control signals to 
the lights to set the hue, brightness, and 
saturation for each light. The current master 
program runs through four types of multi-
coloured chase sequences and random col-
oured or white flashes, but it’s very easy to 
add others by programming the master’s 
microcontroller.

The cost to build...
... is mainly affected by the price of the 
components forming the individual lights. 
By searching around on the Internet (for 
example, LEDs can be found on eBay for 
around 10 pounds for 50 pcs), the cost of 
each individual light can easily be brought 
below £2.50 (excluding PCB).

Hardware
The master module (Figure 2) consists of 
a 5 V regulator (IC1) and associated com-
ponents, a PIC18F2550 microcontroller 
running at 20 MHz, and a reset circuit for 

the PIC (R7, D3, D4, and C9). It includes 
other sections for the extensions that are 
optional, and so not yet implemented:
 

• visual indicators (D1 and D2) to indicate 
the status of the master;

• a push-button (S1) for changing the 
movement pattern;

• a TTL-level serial port connector (K7) for 
communicating with the PIC;

• an EEPROM (IC2) for storing movement 
sequences;

• an analogue input (K2) so the move-
ment can follow the rhythm of the 
music — for example, by connecting a 
mic/amplifier circuit;

• a USB connector (K6) so the fairy-lights 
can be driven from a computer.

Only two pins of the PIC are needed to 
provide the interface with the individual 
lights. One pin configured as an output 
(CCP1) transmits the control signal to the 
first light via connector K4. One other pin 
configured as an input (CCP2) receives the 

By Boris Lecourt (France)

As Christmas approaches, rope-
lights and fairy-lights are starting 
to appear in supermarkets 
everywhere. They’re ridiculously 
cheap, it’s true — but don’t 
you think they’re a bit short on 
originality? The project described 
in this article attempts to put this 
right, admittedly at greater cost, 
but what fun to build your very 
own Christmas lights, entrancing 
and totally unique — and what a 
fine present they’d make, too!
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return signal from the last light via connec-
tor K5. These signals are pulled down to 0 V 
via resistors R1 and R6, for reasons which 
will be explained later.
Connectors K4 and K5 convey the power rail 
to all the individual lights in the string.

Circuit of the individual lights
Each individual light (Figure 3) consists of 
a small 8-pin 12F508 PIC microcontroller 
(IC2), a 78L05 5 V regulator, two switching 
transistors (T1 and T2), and an RGB LED (D1) 
with current limiting resistors. For better 
colour rendering, you can matt the front of 
the LEDs using fine glass-paper, which helps 
improve the mixing of the R, G, and B colour 
components.
All the input/output (I/O) pins of the PIC are 
used. Three pins GP0 to GP2 are configured 
as outputs and are connected to the LED’s 
R, G, and B cathodes. A ‘0’ on these pins 
allows current to flow in the LED elements. 
One pin, GP5, also configured as an output, 
is used for controlling all three elements 
together. It drives the LED anode via tran-
sistor T1, allowing a current of 60 mA to be 
switched, greater than the PIC output alone 
could handle (20 mA). PWM (pulse width 
modulation) signals from these pins make 
it possible to adjust the brightness of each 
element, as well as the overall brightness of 
the LED triad as a whole.
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Figure 1. Block diagram of the light string.  
You can connect up to 62 slave modules (individual lights).
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Figure 2. The master module circuit diagram.  
The EEPROM IC2 could be used for storing sequences. 
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Figure 3. The circuit diagram for one of the 
lights. To be repeated 62 times,  

if you can afford it...
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Pin GP3, configured as an input, is devoted 
to receiving the drive signal from the pre-
vious module (or from the master mod-
ule, if this is the first module in the series). 
This signal is regenerated and inverted by 
transistor T2 before being passed on to 
the next module (see below). The collec-
tor of this transistor is fed from pin GP4 
of the PIC, configured as an output. The 
function of GP4 is to be able to inhibit the 
signal sent to the next module when it is 
taken to 0 V. This function is used in the 
counting stage when the fairy-lights are 
first initialized.

The PIC and the LED are fed via the 5 V reg-
ulator, which can supply up to 100 mA, 
enough to light all three LED elements con-
tinuously at their maximum permitted cur-
rent (20 mA each). This regulator is pow-
ered from the 9 V rail that comes directly 
from the master module’s PSU.
We have designed PCBs for the master and 
slave modules, available from the Elektor 
website [1].

Software
The master module’s PIC program was 
produced in C with the help of the MPLAB 
MCC18 compiler [2] (free version 3.21).
The PIC program for the individual lights 
was produced in C using the CC5X com-
piler [3] (free version 3.3A) which generates 
simple optimized assembler code that is 
very close to the C code.
The two pieces of software can be down-
loaded from the web page for this 
article [1].

All the ingenuity in these fairy-lights lies 
in the software, so it’s considerably more 
complicated than the actual hardware itself. 
This software uses some interesting tech-
niques that can be employed in other appli-
cations. Even though all the individual lights 
contain the same software, each light can 
be addressed individually, without needing 
to be configured first. The individual lights 
can be interchanged, or a failed one can be 
replaced, without changing the behaviour 
of the string as a whole.

We’re using this technique here to produce 
a string of fairy-lights, but by replacing the 

RGB LEDs with relays and using the appro-
priate hardware (and modifying the soft-
ware, of course), you could easily produce, 
for example, a modular garden watering 
and irrigation system — or a home auto-
mation system for adjusting the lighting 
in the various rooms in your house. What’s 
more, the master module can be expanded 
using a USB port, for example, or an EEP-
ROM. So there’s no shortage of potential 
applications.

So, how does this software work? Well, 
take a look at Figures 4 and 5 for an over-
view, and read the following description 
carefully.

Initialising the light string
When power is first applied, the master and 
the individual lights start a 3-stage initiali-
sation process:

1. Polarity detection;
2. Frequency calibration;
3. Addressing and counting.

Polarity detection
This stage allows each individual light to 
determine if it is separated from the master 
by an odd or even number of other lights, 
in order to allow for the inversions caused 
by the T2 transistors in decoding the drive 
signals.

At initialization, the master PIC outputs are 
at high impedance, and so resistor R1 pulls 
the CCP1 output down to 0 V. The second 
light and all the others in even positions 
now detect a ‘1’ on their GP3 inputs. Using 
a program variable that stores this polarity, 
these lights will from now on invert the GP3 
input before interpreting it.
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Figure 4. Flow chart for the master program.
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In the following explanations, we’ll use ‘N’ 
to describe a ‘0’ (0 V) and ‘P’ to describe a 
‘1’ (5 V) on the GP3 inputs of the ‘odd’ lights 
(with no inversion of the CCP1 signal). The 
opposite applies to the even lights (with 
CCP1 inversion).

Frequency calibration
After detecting the polarity, each light waits 
for a P on its GP3 input. At this moment, the 
master starts transmitting a square-wave 
signal with a period of 200 µs for one sec-
ond. At the same time, each light starts a 
process of measuring the period of the 
square-wave signal received on GP3 using 
the PIC’s T0 timer register. Each time GP3 
changes state, a measurement of the period 
is available to regulate the PIC’s clock rate. 
This is achieved by adjusting the OSCCAL 
register so as to get closer to the measured 
200 µs period. The process stops when the 

measured difference falls below a certain 
threshold. Lastly, to end this stage, each 
light waits for the master to settle the GP3 
signal at N for longer than 130 µs.

Addressing and counting
After completing the preceding step, the 
master generates a sequence of 64 cycles of 
a square-wave signal identical to the previ-
ous one (Figure 6). The modules will then 
‘collaborate’ so that each can determine its 
own address, in the following manner:

1. wait for a P on GP3;
2. wait a few microseconds for all the lights 

to detect this P transition;
3. enable (goes to 0) the GP4 inhibit output 

(through T2, which forces the following 
module’s GP3 input to 0 V);

4. wait for two successive P/N transitions 
on GP3;

5. disable the GP4 inhibit output (goes to 
5 V);

6. count the number of N/P transitions;
7. subtract this number from 63 to obtain 

the address.

If the end-of-string connector is connected 
back to the master module, the master too 
can count the N/P transitions on its CCP2 
pin and in this way count how many individ-
ual lights the string has. It then stores this 
number in the PIC’s internal EEPROM and 
will use it to drive the light-string sequences 
correctly. If the connector is not connected, 
the master counts zero lights, and in this 
event uses the value stored in its EEPROM.

Control signal
After the string has been initialized, the mas-
ter module starts the sequencing. As the 
master only has one wire to carry its quite 
complex control signals, the communica-
tion protocol is also a little complicated.
The master can transmit over 1,000 words a 
second to the lights. A word is coded using 
seven bits. The value of the first bit indicates 
if the following six bits are an address (bit 1 
= 0) or a command (bit 1 = 1). Each word is 
separated from the previous one by an ‘End’ 
marker. This marker makes it possible to re-
synchronise any lights that might have got 
out of sync with the control signal. 
Single-wire transmission is achieved by an 
asynchronous serial signal using a proprie-
tary protocol. To transmit a ‘1’ bit, the mas-
ter module sets the control signal to 0 V for 
30 µs, then to 5 V for 58.3 µs. To transmit a 
‘0’ bit, the master reverses these timings, 
setting the signal to 0 V for 58.3 µs, then to 
5 V for 30 µs. To transmit the ‘End’ marker, 
the master sets the control signal to 0 V 
for 160 µs, then to 5 V for 20 µs. Hence the 
total period for transmission of an address 
or command word is 798 µs.

In order to decode this word, the individual 
light synchronise themselves by waiting for 
an N-to-P transition on their GP3 inputs. 
They then measure the duration of the P 
state using their T0 timers and deduce from 
this whether the master sent a 0 or a 1.

Address word
The A word (Address) enables the master to 
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Figure 5. Flow chart for the lights program.
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address up to 62 individual lights. The first 
light connected directly to the master has 
the address 1, the next has the address 2, 
and so on. Addresses 0 and 63 have special 
functions. Address 0 is used as a ‘neutral’ 
word that doesn’t change the state of the 
lights. This word enables the master to pro-
vide a clock to the lights, which need this 
to be able to light up at the required bright-
ness, even when there are no command or 
address words. Address 63 allows the mas-
ter to address all the lights at the same time 
(this is a broadcast address).

As soon as a light has decoded its own 
address, it ignores any other addresses that 
follow immediately, and then executes all 

command words that arrive until the next 
address word is received.

Command words
Each individual light has four memory loca-
tions and two pointers that address them. 
Each memory location stores a set of four 
intensities, three for the RGB components 
and one for the overall component. These 
locations are addressed by write and read 
pointers. The master can move these point-
ers at will from one memory to the next, via 
six special commands (Table 1).
Four other commands enable the master 
to write an intensity value (from 0 to 15) 
for the RGB components and an intensity 
value (from 0 to 9) for the overall compo-

Table 1. Command word values and functions

5 4 3 2 1 0 Operation

0 0 0 0 0 0 Set the component read pointer to memory 0

0 0 0 0 0 1 Set the component write pointer to memory 0

0 0 0 0 1 0 Set the component read pointer to memory 2

0 0 0 0 1 1 Set the component write pointer to memory 2

0 0 0 1 0 0 Increment the component read pointer

0 0 0 1 0 1 Increment the component write pointer

0 0 I3 I2 I1 I0 (I3 to I0) – 6 = overall intensity setting (0–9)

0 1 I3 I2 I1 I0 I3 to I0 = red component intensity setting (0–15)

1 0 I3 I2 I1 I0 I3 to I0 = green component intensity setting (0–15)

1 1 I3 I2 I1 I0 I3 to I0 = blue component intensity setting (0–15)

Table 2: R, G, or B component generation table.

BRI COUNTER LEVEL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 %

1 1 1 6 %

2 1 1 1 9 %

3 1 1 1 1 13 %

4 1 1 1 1 1 16 %

5 1 1 1 1 1 1 19 %

6 1 1 1 1 1 1 1 22 %

7 1 1 1 1 1 1 1 1 25 %

8 1 1 1 1 1 1 1 1 1 1 31 %

9 1 1 1 1 1 1 1 1 1 1 1 1 38 %

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 44 %

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 %

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 63 %

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 75 %

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 84 %

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 %
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Figure 6. Timing diagram for the counting 
stage that enables each light to determine 

its own address.
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nent into the memory addressed by the 
write pointer.
The master moves the read pointer (‘read’ 
from the point of view of the individual 
lights) over a set of data it has previously 
written. In so doing, it selects this set as 
the illumination set-point for the light. By 
using the broadcast address 63, the master 
can change the illumination set-points of all 
the lights in the string at once, producing a 
simultaneous effect.
For example, to make the lights all light up 
red at the same time, the master can send 
the following words one after the other 
(assuming that at the outset, the individual 
lights’ read and write pointers are at the first 
memory location 0):

A-3F: address word 0x3F, 63 in decimal, 
broadcast address, 

C-05: command word, moves write point-
ers to location 1,

C-0F: sets overall components to maxi-
mum (9),

C-1F: sets red (R) components to maxi-
mum (15),

C-20: sets green (G) components to 0 
(unlit),

C-30: sets blue (B) components to 0 
(unlit),

C-04: moves the read pointers to location 
1 (illuminated red).

Applying the illumination drives
The individual light modules generate the 

illumination drives by altering the chosen 
lit/unlit duty cycles of the LED elements. 
This generation takes place periodically in 
two cycles:

1. a 25.5 ms cycle for the RGB components 
and 

2. a 798 µs cycle for the overall 
component.

RGB component generation cycle
Systematically every 798 µs, a light receives 
a command or address word from the mas-
ter. Each time, it increases a counter that 
runs in a loop from 0 to 31. This counter, 
with the intensity set-point to be applied, 
enables it to step through a component illu-
mination table (Table 2). If the table con-
tains a 1, the light lights up the component 
by setting a 0 on the relevant GP0, GP1, or 
GP2 output. If the table contains a 0, the 
light extinguishes the component by set-
ting the output to 1.

As this counter can take 32 values, the inten-
sity set-point generation cycle has a period 
of  32 × 798 µs = 25.5 ms. As this duration is 
longer than the eye’s 20 ms persistence of 
vision, this could cause a slight impression 
of twinkling. A number of choices have been 
made to reduce this effect:

• a minimum of two illuminations are car-
ried out during the generation cycle and

• these illuminations are positioned in a 

specific way within the cycle.

You will notice that the intensity set-point 
is not exactly proportional to the element’s 
illumination level during the cycle. This lets 
us compensate for the Weber-Fechner law 

[4] (stating that “the sensation varies as the 
logarithm of the stimulus”) and allows our 
eyes to perceive an intensity that is substan-
tially proportional to the set-point.

Overall component generation cycle
The successive operations (bit decoding, 
command execution) an individual light 
performs during the 798 µs word transmis-
sion cycle are broken down into nine seg-
ments by special processing devoted to gen-
erating the intensity of the overall compo-
nent (Figure 5). At the start of the cycle, 
the light resets a counter to 0. At each step 
of the processing, the light sets the PIC’s 
GP5 output to 0 (lit) if the counter value is 
lower than the intensity set-point, or 1 if it is 
higher. Each time, the light increments the 
counter by 1.

Combining the components
Combining the RGB and overall components 
lets us adjust the brightness over a wide 
range. This is particularly useful where a col-
our is obtained from a mixture of two com-
ponents, as in the case of orange, obtained 
by mixing the red and green components. 
A good orange colour is obtained by setting 
the RGB components to 15, 6, and 0 respec-
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tively. By reducing these values moderately 
and proportionately (for example, to 10, 4, 
and 0), we can obtain a lower intensity with-
out changing the orange colour too much. 

However, it becomes hard to reduce the 
intensity still further, as this would lead to a 
more drastic change in the colour. The ratio 
between the perceived luminous intensities 
of the R and G components would depart 
too far from the initial value that gave us the 
orange colour. To obtain a greater intensity 
reduction, it’s better to act upon the overall 
component.

Just to finish off...
After reading the rather detailed description 
of the software, you may be feeling like a 
bit of a change. Well, make the most of that 
to wire up the lights — you’ve got another 
62 to go! Warning: the master module soft-
ware published on the site works fine with 
around 30 lights, but has not been tested 
with a greater number — the limit will be 
related to the maximum rate at which 
commands can be sent out from the mas-
ter module. And while you’re trying to sol-
der the SMD components, you’ll be able to 
have a think about other applications for 

this dynamically-addressed ‘single-wire’ 
network (using four wires). 

Send us your suggestions, and photos or 
videos of your fairy-lights, and we’ll publish 
the best of them in a future issue and/or on 
our website.

Happy Christmas!
(090125-I)

Internet links

[1] www.elektor.com/090125

[2] www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&

nodeId=1406&dDocName=en010014

[3] www.bknd.com/cc5x/index.shtml

[4] en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

COMPONENT LIST

Master module

Resistors
R1 = 1kΩ
R2,R3 = 2.2kΩ
R4,R5 = 100Ω
R6 = 22kΩ
R7 = 10kΩ

Capacitors
C1 = 1000µF 35V, radial, lead pitch 5.08mm 

(0.2 in.)
C2,C3,C4,C7,C8 = 100nF
C5,C6 = 22pF
C9 = 10µF 35V, radial, lead pitch 5.08mm (0.2 

in)

Semiconductors
D1, D2 = LED, 3mm (see text)
D3, D4 = 1N4148
IC1 = 7805
IC2 = 24FC1025-I/P (Microchip) (see text)
IC3 = PIC18F2550 (Microchip)

Miscellaneous
K1 = 2-way terminal block, lead pitch 5.08mm 

(0.2 in.)
K2, K3 = 5-way SIL pinheader, lead pitch 

5.08mm (0.2 in.)
K4, K5 = 2-way terminal block, lead pitch 

5.08mm (0.2 in.)

K6 = USB-B socket for IC (see text)
K7 = 4-way SIL pinheader, lead 

pitch 5.08mm (0.2 in.)
S1 = pushbutton, 1 make contact 

(see text)
X1 = 20MHz quartz crystal, HC49/

U case
PCB, ref. 090125-1 [1]

Miniature lamp (each)

Resistors (SMD 1206)
R1 = 2.2kΩ
R2 = 100Ω
R3 = 4.7kΩ
R4, R5 = 47Ω
R6 = 47kΩ

Capacitors
C1 = 220µF 25V radial, lead pitch 

2.54mm (0.1 in.)
C2 = 100nF (SMD 1206)

Semiconductors
D1 = LED, RGB, common anode
IC1 = TS78L05CX, SOT-23 case
IC2 = PIC12F508-I/SN (Microchip, 

SOIC-150)
T1 = BC857, SOT-23 case
T2 = BC847, SOT-23 case

Miscellaneous
PCB, ref. 090125-2 [1]

Master module component layout.

Slave module layout, component side (left) and 
soldering side (right).




