
36 12-2009 elektor

Top-of-the-Bill
Lights Sequencer
Programmable fairy lights

HOME & GARDEN

These lights let you produce the most dra-
matic lighting effects, by altering the count-
less available movement patterns (vari-
able-speed chaser, random illumination,
short or long flashes, etc.), and adjusting
the colour (32 levels), saturation (16 levels,
including white), and brightness (24 levels)
— that means over 10,000 possible colour
permutations!

Broadly speaking, the system consists of
a master module that drives from 1 to 62
slave modules, identical in all respects (the
‘lights’), with a 9 V PSU, supplying at least
2 A for 30 lights. The power supply is dis-
tributed to the master and lights in parallel
(Figure 1).
The master drives all the lights over a single
wire that carries a serial control signal. Dur-
ing the initialization stage, a return signal
allows it to count the number of lights,
which is then stored in the PIC’s internal
EEPROM. Thus this return signal is used
only once in the fairy-lights’ lifetime, and
can then be disconnected, meaning that

only one end of the string of lights has to
be connected to the master module.
The master sends regular control signals to
the lights to set the hue, brightness, and
saturation for each light. The current master
program runs through four types of multi-
coloured chase sequences and random col-
oured or white flashes, but it’s very easy to
add others by programming the master’s
microcontroller.

The cost to build...
... is mainly affected by the price of the
components forming the individual lights.
By searching around on the Internet (for
example, LEDs can be found on eBay for
around 10 pounds for 50 pcs), the cost of
each individual light can easily be brought
below £2.50 (excluding PCB).

Hardware
The master module (Figure 2) consists of
a 5 V regulator (IC1) and associated com-
ponents, a PIC18F2550 microcontroller
running at 20 MHz, and a reset circuit for

the PIC (R7, D3, D4, and C9). It includes
other sections for the extensions that are
optional, and so not yet implemented:

• visual indicators (D1 and D2) to indicate
the status of the master;

• a push-button (S1) for changing the
movement pattern;

• a TTL-level serial port connector (K7) for
communicating with the PIC;

• an EEPROM (IC2) for storing movement
sequences;

• an analogue input (K2) so the move-
ment can follow the rhythm of the
music — for example, by connecting a
mic/amplifier circuit;

• a USB connector (K6) so the fairy-lights
can be driven from a computer.

Only two pins of the PIC are needed to
provide the interface with the individual
lights. One pin configured as an output
(CCP1) transmits the control signal to the
first light via connector K4. One other pin
configured as an input (CCP2) receives the

By Boris Lecourt (France)

As Christmas approaches, rope-
lights and fairy-lights are starting
to appear in supermarkets
everywhere. They’re ridiculously
cheap, it’s true — but don’t
you think they’re a bit short on
originality? The project described
in this article attempts to put this
right, admittedly at greater cost,
but what fun to build your very
own Christmas lights, entrancing
and totally unique — and what a
fine present they’d make, too!

37elektor 12-2009

return signal from the last light via connec-
tor K5. These signals are pulled down to 0 V
via resistors R1 and R6, for reasons which
will be explained later.
Connectors K4 and K5 convey the power rail
to all the individual lights in the string.

Circuit of the individual lights
Each individual light (Figure 3) consists of
a small 8-pin 12F508 PIC microcontroller
(IC2), a 78L05 5 V regulator, two switching
transistors (T1 and T2), and an RGB LED (D1)
with current limiting resistors. For better
colour rendering, you can matt the front of
the LEDs using fine glass-paper, which helps
improve the mixing of the R, G, and B colour
components.
All the input/output (I/O) pins of the PIC are
used. Three pins GP0 to GP2 are configured
as outputs and are connected to the LED’s
R, G, and B cathodes. A ‘0’ on these pins
allows current to flow in the LED elements.
One pin, GP5, also configured as an output,
is used for controlling all three elements
together. It drives the LED anode via tran-
sistor T1, allowing a current of 60 mA to be
switched, greater than the PIC output alone
could handle (20 mA). PWM (pulse width
modulation) signals from these pins make
it possible to adjust the brightness of each
element, as well as the overall brightness of
the LED triad as a whole.

power supply

Master

sm
all lam

p

RGB
LED

090125 - 15

power supply (2 wires)

control signal (1 wire)

return signal (1 wire)

sm
all lam

p

RGB
LED

sm
all lam

p

RGB
LED

sm
all lam

p

RGB
LED

Figure 1. Block diagram of the light string.
You can connect up to 62 slave modules (individual lights).

MCLR/VPP
1

RA0
2

RA1
3

RA2
4

RA3
5

RA4
6

RA5
7

VSS

8

O
SC

1
9

O
SC

10

RC0
11

RC1/CCP2
12

RC2/CCP1
13

VUSB
14

RC4/D-
15

RC5/D+
16

RC6/TX/CK
17

RC7/RX/DT
18

VSS

19

VDD

20

RB0/SDA
21

RB1/SCL
22

RB2/INT2
23

RB3
24

RB4
25

RB5
26

RB6/PGC
27

RB7/PGD
28

IC3

PIC18F2550

C6

22p

C5

22p

X1

20MHz

K3

1 2

3

IC1

7805

35V

C1

1000u

C2

100n

C8

100n

C7

100n

K7

VCC

VCC

1

2

3

4

5 6

D-

D+

GND

K6

C4

100n

S1

A0
1

A1
2

A2
3

GND

4

SDA
5

SCL
6

WP
7

VCC

8IC2

24FC1025

R3

2k
2

R2

2k
2

VCC

R5

10
0R

R4

10
0R

D2D1

K2

C3

100n

R6

22
k

K4

K5

1st LED

Last LED

R1

1k

R7

10
k

D3

1N4148
D4

1N4148

35V

C9

10u

VCC

K1

VCC

090125 - 11

USB-B

Figure 2. The master module circuit diagram.
The EEPROM IC2 could be used for storing sequences.

C1

220u

1 3

2

IC1
78L05

C2

100n

VCC

VCC

VCC

R1
2k2

R2
100R

R4
47R

R5
47R

R3

4k
7

R6

47
k

T1

BC857

T2

BC847

D1
R

G

B

common

I

O

VDD

1

GP5
2

GP4
3

GP3
4

GP2
5

GP1
6

GP0
7

VSS

8

IC2

PIC12F508

090125 - 12

Figure 3. The circuit diagram for one of the
lights. To be repeated 62 times,

if you can afford it...

38 12-2009 elektor

Pin GP3, configured as an input, is devoted
to receiving the drive signal from the pre-
vious module (or from the master mod-
ule, if this is the first module in the series).
This signal is regenerated and inverted by
transistor T2 before being passed on to
the next module (see below). The collec-
tor of this transistor is fed from pin GP4
of the PIC, configured as an output. The
function of GP4 is to be able to inhibit the
signal sent to the next module when it is
taken to 0 V. This function is used in the
counting stage when the fairy-lights are
first initialized.

The PIC and the LED are fed via the 5 V reg-
ulator, which can supply up to 100 mA,
enough to light all three LED elements con-
tinuously at their maximum permitted cur-
rent (20 mA each). This regulator is pow-
ered from the 9 V rail that comes directly
from the master module’s PSU.
We have designed PCBs for the master and
slave modules, available from the Elektor
website [1].

Software
The master module’s PIC program was
produced in C with the help of the MPLAB
MCC18 compiler [2] (free version 3.21).
The PIC program for the individual lights
was produced in C using the CC5X com-
piler [3] (free version 3.3A) which generates
simple optimized assembler code that is
very close to the C code.
The two pieces of software can be down-
loaded from the web page for this
article [1].

All the ingenuity in these fairy-lights lies
in the software, so it’s considerably more
complicated than the actual hardware itself.
This software uses some interesting tech-
niques that can be employed in other appli-
cations. Even though all the individual lights
contain the same software, each light can
be addressed individually, without needing
to be configured first. The individual lights
can be interchanged, or a failed one can be
replaced, without changing the behaviour
of the string as a whole.

We’re using this technique here to produce
a string of fairy-lights, but by replacing the

RGB LEDs with relays and using the appro-
priate hardware (and modifying the soft-
ware, of course), you could easily produce,
for example, a modular garden watering
and irrigation system — or a home auto-
mation system for adjusting the lighting
in the various rooms in your house. What’s
more, the master module can be expanded
using a USB port, for example, or an EEP-
ROM. So there’s no shortage of potential
applications.

So, how does this software work? Well,
take a look at Figures 4 and 5 for an over-
view, and read the following description
carefully.

Initialising the light string
When power is first applied, the master and
the individual lights start a 3-stage initiali-
sation process:

1. Polarity detection;
2. Frequency calibration;
3. Addressing and counting.

Polarity detection
This stage allows each individual light to
determine if it is separated from the master
by an odd or even number of other lights,
in order to allow for the inversions caused
by the T2 transistors in decoding the drive
signals.

At initialization, the master PIC outputs are
at high impedance, and so resistor R1 pulls
the CCP1 output down to 0 V. The second
light and all the others in even positions
now detect a ‘1’ on their GP3 inputs. Using
a program variable that stores this polarity,
these lights will from now on invert the GP3
input before interpreting it.

090125 - 17

switch on supply
transmission

to lamps

• generate polarity detection signal
• generate frequency calibration signal
• generate address determining signal
• count down lamps
• initialize Read and Write pointers

tick offset
between

two loops

animation
table

 table of
components to come:
 • HSL
 • countdown

wait for
next tick

(tick = 12.8 ms)

calculate
and update

Read pointers
for lamps

decrement
countdowns

of next components

calculate components
to come

and their countdowns

transmit next
components

to lamps

update lamp
Write pointers

conversion
HSL RGBL

Figure 4. Flow chart for the master program.

39elektor 12-2009

In the following explanations, we’ll use ‘N’
to describe a ‘0’ (0 V) and ‘P’ to describe a
‘1’ (5 V) on the GP3 inputs of the ‘odd’ lights
(with no inversion of the CCP1 signal). The
opposite applies to the even lights (with
CCP1 inversion).

Frequency calibration
After detecting the polarity, each light waits
for a P on its GP3 input. At this moment, the
master starts transmitting a square-wave
signal with a period of 200 µs for one sec-
ond. At the same time, each light starts a
process of measuring the period of the
square-wave signal received on GP3 using
the PIC’s T0 timer register. Each time GP3
changes state, a measurement of the period
is available to regulate the PIC’s clock rate.
This is achieved by adjusting the OSCCAL
register so as to get closer to the measured
200 µs period. The process stops when the

measured difference falls below a certain
threshold. Lastly, to end this stage, each
light waits for the master to settle the GP3
signal at N for longer than 130 µs.

Addressing and counting
After completing the preceding step, the
master generates a sequence of 64 cycles of
a square-wave signal identical to the previ-
ous one (Figure 6). The modules will then
‘collaborate’ so that each can determine its
own address, in the following manner:

1. wait for a P on GP3;
2. wait a few microseconds for all the lights

to detect this P transition;
3. enable (goes to 0) the GP4 inhibit output

(through T2, which forces the following
module’s GP3 input to 0 V);

4. wait for two successive P/N transitions
on GP3;

5. disable the GP4 inhibit output (goes to
5 V);

6. count the number of N/P transitions;
7. subtract this number from 63 to obtain

the address.

If the end-of-string connector is connected
back to the master module, the master too
can count the N/P transitions on its CCP2
pin and in this way count how many individ-
ual lights the string has. It then stores this
number in the PIC’s internal EEPROM and
will use it to drive the light-string sequences
correctly. If the connector is not connected,
the master counts zero lights, and in this
event uses the value stored in its EEPROM.

Control signal
After the string has been initialized, the mas-
ter module starts the sequencing. As the
master only has one wire to carry its quite
complex control signals, the communica-
tion protocol is also a little complicated.
The master can transmit over 1,000 words a
second to the lights. A word is coded using
seven bits. The value of the first bit indicates
if the following six bits are an address (bit 1
= 0) or a command (bit 1 = 1). Each word is
separated from the previous one by an ‘End’
marker. This marker makes it possible to re-
synchronise any lights that might have got
out of sync with the control signal.
Single-wire transmission is achieved by an
asynchronous serial signal using a proprie-
tary protocol. To transmit a ‘1’ bit, the mas-
ter module sets the control signal to 0 V for
30 µs, then to 5 V for 58.3 µs. To transmit a
‘0’ bit, the master reverses these timings,
setting the signal to 0 V for 58.3 µs, then to
5 V for 30 µs. To transmit the ‘End’ marker,
the master sets the control signal to 0 V
for 160 µs, then to 5 V for 20 µs. Hence the
total period for transmission of an address
or command word is 798 µs.

In order to decode this word, the individual
light synchronise themselves by waiting for
an N-to-P transition on their GP3 inputs.
They then measure the duration of the P
state using their T0 timers and deduce from
this whether the master sent a 0 or a 1.

Address word
The A word (Address) enables the master to

switch on voltage

OSCCAL

• animation
• polarity detection
• frequency calibration
• animation
• determine address
• animation

• global component processing
• decode first bit

• global component processing
• bit decoding

• global component processing
• bit decoding

• global component processing
• R intensity processing
• G intensity processing
• B intensity processing
• global component processing

address processing

execute command

addressed

address

not addressed

instruction

x6 address bits

x6 command bits

address

address
memory

Read pointer Write pointer

lights memory

polarity

090125 - 16

Figure 5. Flow chart for the lights program.

40 12-2009 elektor

address up to 62 individual lights. The first
light connected directly to the master has
the address 1, the next has the address 2,
and so on. Addresses 0 and 63 have special
functions. Address 0 is used as a ‘neutral’
word that doesn’t change the state of the
lights. This word enables the master to pro-
vide a clock to the lights, which need this
to be able to light up at the required bright-
ness, even when there are no command or
address words. Address 63 allows the mas-
ter to address all the lights at the same time
(this is a broadcast address).

As soon as a light has decoded its own
address, it ignores any other addresses that
follow immediately, and then executes all

command words that arrive until the next
address word is received.

Command words
Each individual light has four memory loca-
tions and two pointers that address them.
Each memory location stores a set of four
intensities, three for the RGB components
and one for the overall component. These
locations are addressed by write and read
pointers. The master can move these point-
ers at will from one memory to the next, via
six special commands (Table 1).
Four other commands enable the master
to write an intensity value (from 0 to 15)
for the RGB components and an intensity
value (from 0 to 9) for the overall compo-

Table 1. Command word values and functions

5 4 3 2 1 0 Operation

0 0 0 0 0 0 Set the component read pointer to memory 0

0 0 0 0 0 1 Set the component write pointer to memory 0

0 0 0 0 1 0 Set the component read pointer to memory 2

0 0 0 0 1 1 Set the component write pointer to memory 2

0 0 0 1 0 0 Increment the component read pointer

0 0 0 1 0 1 Increment the component write pointer

0 0 I3 I2 I1 I0 (I3 to I0) – 6 = overall intensity setting (0–9)

0 1 I3 I2 I1 I0 I3 to I0 = red component intensity setting (0–15)

1 0 I3 I2 I1 I0 I3 to I0 = green component intensity setting (0–15)

1 1 I3 I2 I1 I0 I3 to I0 = blue component intensity setting (0–15)

Table 2: R, G, or B component generation table.

BRI COUNTER LEVEL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 %

1 1 1 6 %

2 1 1 1 9 %

3 1 1 1 1 13 %

4 1 1 1 1 1 16 %

5 1 1 1 1 1 1 19 %

6 1 1 1 1 1 1 1 22 %

7 1 1 1 1 1 1 1 1 25 %

8 1 1 1 1 1 1 1 1 1 1 31 %

9 1 1 1 1 1 1 1 1 1 1 1 1 38 %

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 44 %

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 50 %

12 1 63 %

13 1 75 %

14 1 84 %

15 100 %

1

1 INHIBIT
(GP4)0

P (GP3=1)

1ms

N (GP3=0)

la
m

p
1

2 3

1 INHIBIT
(GP4)0

P (GP3=0)

N (GP3=1)

la
m

p
2

1 2

1 INHIBIT
(GP4)0

P (GP3=1)

N (GP3=0)

la
m

p
3

1

090125 - 18

Figure 6. Timing diagram for the counting
stage that enables each light to determine

its own address.

41elektor 12-2009

nent into the memory addressed by the
write pointer.
The master moves the read pointer (‘read’
from the point of view of the individual
lights) over a set of data it has previously
written. In so doing, it selects this set as
the illumination set-point for the light. By
using the broadcast address 63, the master
can change the illumination set-points of all
the lights in the string at once, producing a
simultaneous effect.
For example, to make the lights all light up
red at the same time, the master can send
the following words one after the other
(assuming that at the outset, the individual
lights’ read and write pointers are at the first
memory location 0):

A-3F: address word 0x3F, 63 in decimal,
broadcast address,

C-05: command word, moves write point-
ers to location 1,

C-0F: sets overall components to maxi-
mum (9),

C-1F: sets red (R) components to maxi-
mum (15),

C-20: sets green (G) components to 0
(unlit),

C-30: sets blue (B) components to 0
(unlit),

C-04: moves the read pointers to location
1 (illuminated red).

Applying the illumination drives
The individual light modules generate the

illumination drives by altering the chosen
lit/unlit duty cycles of the LED elements.
This generation takes place periodically in
two cycles:

1. a 25.5 ms cycle for the RGB components
and

2. a 798 µs cycle for the overall
component.

RGB component generation cycle
Systematically every 798 µs, a light receives
a command or address word from the mas-
ter. Each time, it increases a counter that
runs in a loop from 0 to 31. This counter,
with the intensity set-point to be applied,
enables it to step through a component illu-
mination table (Table 2). If the table con-
tains a 1, the light lights up the component
by setting a 0 on the relevant GP0, GP1, or
GP2 output. If the table contains a 0, the
light extinguishes the component by set-
ting the output to 1.

As this counter can take 32 values, the inten-
sity set-point generation cycle has a period
of 32 × 798 µs = 25.5 ms. As this duration is
longer than the eye’s 20 ms persistence of
vision, this could cause a slight impression
of twinkling. A number of choices have been
made to reduce this effect:

• a minimum of two illuminations are car-
ried out during the generation cycle and

• these illuminations are positioned in a

specific way within the cycle.

You will notice that the intensity set-point
is not exactly proportional to the element’s
illumination level during the cycle. This lets
us compensate for the Weber-Fechner law

[4] (stating that “the sensation varies as the
logarithm of the stimulus”) and allows our
eyes to perceive an intensity that is substan-
tially proportional to the set-point.

Overall component generation cycle
The successive operations (bit decoding,
command execution) an individual light
performs during the 798 µs word transmis-
sion cycle are broken down into nine seg-
ments by special processing devoted to gen-
erating the intensity of the overall compo-
nent (Figure 5). At the start of the cycle,
the light resets a counter to 0. At each step
of the processing, the light sets the PIC’s
GP5 output to 0 (lit) if the counter value is
lower than the intensity set-point, or 1 if it is
higher. Each time, the light increments the
counter by 1.

Combining the components
Combining the RGB and overall components
lets us adjust the brightness over a wide
range. This is particularly useful where a col-
our is obtained from a mixture of two com-
ponents, as in the case of orange, obtained
by mixing the red and green components.
A good orange colour is obtained by setting
the RGB components to 15, 6, and 0 respec-

www.eurocircuits.com

New PCB prototype servicePrototype & small series PCB specialists

Call us: 020 8816 7005 Email: euro@eurocircuits.com

Instant online pricing and ordering
Low order-pooling prices - 1–8 layers
Full options service On demand - 1-16 layers
Deliveries from 2 days
Stencil service

- 2 boards in 2, 3 or 5 days
- No tooling charge
- Low PCB-Proto prices
 E.g. 2 x 100 x 80 mm: 2 layers 38.12€ each*
 4 layers 77.23€ each*
- Immediate online ordering
- No minimum order charge

*excluding transport and VAT

Publicité

42 12-2009 elektor

tively. By reducing these values moderately
and proportionately (for example, to 10, 4,
and 0), we can obtain a lower intensity with-
out changing the orange colour too much.

However, it becomes hard to reduce the
intensity still further, as this would lead to a
more drastic change in the colour. The ratio
between the perceived luminous intensities
of the R and G components would depart
too far from the initial value that gave us the
orange colour. To obtain a greater intensity
reduction, it’s better to act upon the overall
component.

Just to finish off...
After reading the rather detailed description
of the software, you may be feeling like a
bit of a change. Well, make the most of that
to wire up the lights — you’ve got another
62 to go! Warning: the master module soft-
ware published on the site works fine with
around 30 lights, but has not been tested
with a greater number — the limit will be
related to the maximum rate at which
commands can be sent out from the mas-
ter module. And while you’re trying to sol-
der the SMD components, you’ll be able to
have a think about other applications for

this dynamically-addressed ‘single-wire’
network (using four wires).

Send us your suggestions, and photos or
videos of your fairy-lights, and we’ll publish
the best of them in a future issue and/or on
our website.

Happy Christmas!
(090125-I)

Internet links

[1] www.elektor.com/090125

[2] www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&

nodeId=1406&dDocName=en010014

[3] www.bknd.com/cc5x/index.shtml

[4] en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

COMPONENT LIST

Master module

Resistors
R1 = 1kΩ
R2,R3 = 2.2kΩ
R4,R5 = 100Ω
R6 = 22kΩ
R7 = 10kΩ

Capacitors
C1 = 1000µF 35V, radial, lead pitch 5.08mm

(0.2 in.)
C2,C3,C4,C7,C8 = 100nF
C5,C6 = 22pF
C9 = 10µF 35V, radial, lead pitch 5.08mm (0.2

in)

Semiconductors
D1, D2 = LED, 3mm (see text)
D3, D4 = 1N4148
IC1 = 7805
IC2 = 24FC1025-I/P (Microchip) (see text)
IC3 = PIC18F2550 (Microchip)

Miscellaneous
K1 = 2-way terminal block, lead pitch 5.08mm

(0.2 in.)
K2, K3 = 5-way SIL pinheader, lead pitch

5.08mm (0.2 in.)
K4, K5 = 2-way terminal block, lead pitch

5.08mm (0.2 in.)

K6 = USB-B socket for IC (see text)
K7 = 4-way SIL pinheader, lead

pitch 5.08mm (0.2 in.)
S1 = pushbutton, 1 make contact

(see text)
X1 = 20MHz quartz crystal, HC49/

U case
PCB, ref. 090125-1 [1]

Miniature lamp (each)

Resistors (SMD 1206)
R1 = 2.2kΩ
R2 = 100Ω
R3 = 4.7kΩ
R4, R5 = 47Ω
R6 = 47kΩ

Capacitors
C1 = 220µF 25V radial, lead pitch

2.54mm (0.1 in.)
C2 = 100nF (SMD 1206)

Semiconductors
D1 = LED, RGB, common anode
IC1 = TS78L05CX, SOT-23 case
IC2 = PIC12F508-I/SN (Microchip,

SOIC-150)
T1 = BC857, SOT-23 case
T2 = BC847, SOT-23 case

Miscellaneous
PCB, ref. 090125-2 [1]

Master module component layout.

Slave module layout, component side (left) and
soldering side (right).

